C4	0 2050 (5)	0 1765 (5)	0 1025 (2)	0.0600 (11)
C4	0.2039(3)	-0.1703(3)	0.1923(3)	0.0099 (11)
C5	0.1961 (5)	-0.3039 (5)	0.2821 (3)	0.0780 (12)
C6	0.1376 (6)	-0.2443 (6)	0.4548 (3)	0.0871 (13)
07	0.0708 (2)	0.1153 (3)	0.3695 (2)	0.0555 (6)
C8	0.1922 (3)	0.1776 (4)	0.1806 (2)	0.0441 (7)
N9	0.3044 (3)	0.2517 (3)	0.2236 (2)	0.0492 (7)
O10	0.3667 (2)	0.1507 (3)	0.3065 (2)	0.0572 (6)
C11	0.1243 (4)	0.2791 (5)	0.0882 (2)	0.0527 (8)
F12	0.0112 (3)	0.3654 (5)	0.0996 (2)	0.1152 (12)
F13	0.2047 (3)	0.4091 (4)	0.0577 (2)	0.0936 (9)
F14	0.0942 (4)	0.1644 (4)	0.0121 (2)	0.1173 (12)

Table 2. Selected geometric parameters (Å, °)

	-	-	
N1-C2	1.327 (4)	C4—C5	1.534 (5)
N1-C5	1.450 (4)	C8—N9	1.259 (4)
N1-C6	1.462 (4)	C8-C11	1.500 (4)
C2—07	1.222 (4)	N9-010	1.386 (3)
C2—C3	1.527 (4)	C11—F12	1.288 (4)
C3—C8	1.508 (4)	C11F14	1.311 (4)
C3—C4	1.515 (5)	C11—F13	1.321 (4)
C2-N1-C5	114.7 (3)	N9-C8-C11	114.0 (3)
C2-N1-C6	123.8 (3)	N9—C8—C3	127.4 (3)
C5-N1-C6	121.3 (3)	C11—C8—C3	118.6 (3)
07—C2—N1	124.6 (3)	C8-N9-010	112.4 (2)
07—C2—C3	126.8 (3)	F12-C11-F14	108.2 (4)
N1-C2-C3	108.6 (3)	F12-C11-F13	105.2 (3)
C8-C3-C4	113.7 (3)	F14—C11—F13	104.7 (3)
C8—C3—C2	113.4 (2)	F12-C11-C8	113.0 (3)
C4—C3—C2	104.3 (3)	F14—C11—C8	111.4 (3)
C3—C4—C5	105.3 (3)	F13-C11-C8	113.7 (3)
N1-C5-C4	104.0 (3)		
C5—N1—C2—C3	2.2 (4)	C2N1C5C4	8.8 (5)
N1-C2-C3-C4	-12.4 (3)	C3-C4-C5-N1	-15.9 (4)
C2-C3-C4-C5	17.0 (4)		

The relatively high *R* values are probably the result of poor crystal quality. The shapes of the C6, O7 and, especially, F12 and F13 displacement ellipsoids (Fig. 1) indicate high thermal agitation and unresolved disorder, which may contribute to the high *R* values. The positions of H3 and H10 were determined from a $\Delta \rho$ map; their site coordinates were refined. All other H atoms were located in calculated positions and refined riding on the attached C atom. A common isotropic displacement parameter for all H atoms was refined [U = 0.121 (7) Å²].

Data collection: local program. Cell refinement: local program. Data reduction: local program. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *PLATON* (Spek, 1990). Software used to prepare material for publication: *SHELXL*93.

The National Fund for Scientific Research, Belgium, is gratefully acknowledged for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1223). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bouillon, J.-P. (1994). PhD thesis, Univ. Catholique de Louvain, Belgium.
- Bouillon, J.-P., Atès, C., Janousek, Z. & Viehe, H. G. (1993). Tetrahedron Lett. 34, 5075–5078.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Bouillon, J.-P., Frisque-Hesbain, A. M., Janousek, Z. & Viehe, H. G. (1994). *Heterocycles*. In the press.
- Bouillon, J.-P., Janousek, Z., Viehe, H. G., Tinant, B. & Declercq, J.-P. (1994). Bull. Soc. Chim. Belg. In the press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1995). C51, 272-274

Aversin

SIMON CHAN AND JAMES TROTTER

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 20 July 1994; accepted 15 September 1994)

Abstract

The X-ray crystal structure analysis of the mould metabolite (3aS-cis)-2,3,3a,12a-tetrahydro-4-hydroxy-6,8-dimethoxyanthra[2,3-b]furo[3,2-d]furan-5,10-dione, which contains two C₂₀H₁₆O₇ molecules per asymmetric unit in P2₁, reveals that the molecule contains five fused rings: a planar section of three six-membered rings and one five-membered ring, with a final *cis*-fused five-membered ring. The OH group in each molecule is involved in an intramolecular hydrogen bond [O···O 2.518 (6) and 2.547 (6) Å].

Comment

Aversin, (I), is a metabolite isolated from a variant strain of *Aspergillus versicolor*. The structure derived previously from spectroscopic data (Bullock, Kirkaldy, Roberts & Underwood, 1963) has now been confirmed, except for the interchange of the OH and an OMe group. The two molecules in the asymmetric unit (Fig. 1) have virtually identical geometries and dimensions. The three six-membered rings of the anthraquinone skeleton and the attached five-membered ring are almost coplanar, with the final *cis*-fused five-membered ring displaced from this plane. This final five-membered ring has an envelope conformation, with C17 and C37 displaced from the respective plane of the other four atoms.

Acta Crystallographica Section C ISSN 0108-2701 ©1995

Bond lengths and angles are normal (Table 2) and the OH group is involved in an intramolecular hydrogen bond. The most significant intermolecular contacts are between OH groups, but the distances $[O \cdots O =$ 3.006 (4), $H \cdots O = 2.6$ Å] and geometries suggest that these represent van der Waals interactions rather than bifurcated hydrogen bonds.

Fig. 1. View of the two molecules of aversin with 33% displacement ellipsoids.

Experimental

Crystals from the mould were isolated more than 30 years ago (Bullock *et al.*, 1963) and were described as 'golden needles'. The problem appeared too difficult for X-ray analysis at that time and the structure analysis has been carried out only recently. The crystals are distinctly reddish in color, so that some decomposition has occurred over the 30 year storage period.

Crystal data

$C_{20}H_{16}O_7$	Cu $K\alpha$ radiation		
$M_r = 368.34$	$\lambda = 1.5418$ Å		
Monoclinic	Cell parameters from 25		
P2 ₁	reflections		
a = 5.166 (2) Å	$\theta = 50.3 - 55.4^{\circ}$		
b = 20.282 (2) Å	$\mu = 0.99 \text{ mm}^{-1}$		
c = 15.513 (3) Å	T = 294 K		
$\beta = 96.41 \ (3)^{\circ}$	Prism		
,			

$V = 1615.2 (5) \text{ Å}^3$
Z = 4 (2 molecules per
asymmetric unit)
$D_x = 1.515 \text{ Mg m}^{-3}$

Data collection

AFC-6S diffractometer ω -2 θ scans Absorption correction: none 3835 measured reflections 3432 independent reflections 2812 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.06$

Refinement

01

O2 O3

04 05

06 07

O12 O13

O14

C1 C2

C3

C4

C5 C6

C7

C8 C9

C10 C11

C12

C13

C14

C15 C16

C17

C18

C19 C20

$0.40 \times 0.20 \times 0.20$ mm Red

$\theta_{\rm max} = 77.6^{\circ}$
$h = 0 \rightarrow 6$
$k = 0 \rightarrow 25$
$l = -19 \rightarrow 19$
3 standard reflections
monitored every 200
reflections
intensity decay: 0.6%
• •

$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
Zachariasen (1967) type
2, Gaussian isotropic
Extinction coefficient:
59 (14) \times 10 ⁻⁷
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)
•

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	v	z	U_{eq}
0.7329 (8)	0.1713	0.9625 (3)	0.0663
0 4005 (8)	0.0313 (3)	0.6774 (2)	0.0585
0.0067 (8)	0.3037 (3)	0.8282 (3)	0.0656
0.0395 (8)	0.1182 (3)	0.6368 (2)	0.0606
0.7489 (7)	-0.0560(3)	0.7154 (2)	0.0532
1.3240(7)	-0.0276(3)	0.9638 (3)	0.0559
1.3703 (8)	-0.1403(3)	0.9813 (3)	0.0661
-0.6185(7)	0.1427 (3)	0.4190 (3)	0.0592
-1.4549 (6)	0.2851 (3)	0.2950 (2)	0.0489
-1.0661(8)	-0.0024 (3)	0.1971 (3)	0.0614
-1.5707 (7)	0.1979 (3)	0.1779 (2)	0.0558
-1.3459 (6)	0.3741 (3)	0.4063 (2)	0.0430
-0.6270 (6)	0.3471 (3)	0.6093 (2)	0.0508
-0.5799 (6)	0.4612 (3)	0.6209 (2)	0.0559
0.1050 (10)	0.2464 (3)	0.8031 (3)	0.0473
0.3169 (10)	0.2214 (3)	0.8577 (3)	0.0474
0.4327 (8)	0.1630 (3)	0.8369 (3)	0.0377
0.6582 (9)	0.1403 (3)	0.8972 (3)	0.0430
0.7867 (9)	0.0775 (3)	0.8774 (3)	0.0379
0.9978 (9)	0.0567 (3)	0.9338 (3)	0.0457
1.1131 (8)	-0.0012 (3)	0.9143 (3)	0.0432
1.0319 (8)	-0.0390 (3)	0.8419 (3)	0.0388
0.8237 (9)	-0.0182 (3)	0.7849 (3)	0.0384
0.6966 (9)	0.0417 (3)	0.8020 (3)	0.0380
0.4725 (9)	0.0644 (3)	0.7425 (3)	0.0403
0.3429 (8)	0.1269 (3)	0.7614 (3)	0.0380
0.1281 (9)	0.1525 (3)	0.7080 (3)	0.0444
0.0085 (10)	0.2114 (3)	0.7294 (3)	0.0489
1.1984 (10)	-0.1003 (3)	0.8429 (3)	0.0486
1.3967 (10)	-0.0888 (4)	0.9246 (4)	0.05/6
1.1133 (12)	-0.1677 (4)	0.9613 (4)	0.0629
1.0631 (11)	-0.1644 (3)	0.8645 (4)	0.0527
-0.2094 (11)	0.3316(4)	0.7759(5)	0.0683
-0.1722(10)	0.1438 (3)	0.5805 (3)	0.0553

C21	-1.1249 (10)	0.0592 (3)	0.2225 (3)	0.0443
C22	0.9520 (9)	0.0859 (3)	0.2898 (3)	0.0433
C23	-0.9982 (8)	0.1483 (3)	0.3198 (3)	0.0372
C24	-0.8114 (8)	0.1743 (3)	0.3916 (3)	0.0384
C25	-0.8684 (8)	0.2385 (3)	0.4302 (3)	0.0361
C26	-0.7041 (8)	0.2608 (3)	0.5022 (3)	0.0412
C27	-0.7666 (8)	0.3202 (3)	0.5387 (3)	0.0400
C28	-0.9780 (8)	0.3578 (3)	0.5070 (3)	0.0377
C29	-1.1424 (8)	0.3363 (3)	0.4360 (3)	0.0361
C30	-1.0878 (8)	0.2750 (3)	0.3962 (3)	0.0338
C31	-1.2652 (8)	0.2511 (3)	0.3228 (3)	0.0346
C32	-1.2133 (8)	0.1869 (3)	0.2847 (3)	0.0366
C33	-1.3752 (8)	0.1600 (3)	0.2143 (3)	0.0393
C34	-1.3336 (9)	0.0964 (3)	0.1845 (3)	0.0446
C35	-0.9866 (8)	0.4188 (3)	0.5616 (3)	0.0414
C36	-0.7459 (9)	0.4094 (3)	0.6290 (3)	0.0466
C37	-0.6359 (10)	0.4879 (3)	0.5346 (4)	0.0563
C38	-0.9278 (9)	0.4830 (3)	0.5157 (3)	0.0471
C39	-1.2475 (15)	-0.0328 (3)	0.1320 (4)	0.0692
C40	-1.7350 (11)	0.1734 (4)	0.1046 (4)	0.0575

Table 2. Selected bond lengths ($\sigma \sim 0.006$ Å) and angles $(\sigma \sim 0.4^{\circ})$

<u>~~</u> 0	1 218 1 221 (and budge and barded)
L– 0	1.218, 1.221 (not hydrogen bonded)
	1.236, 1.236 (hydrogen bonded)
COH/OMe	1.339-1.354
COMe	1.420-1.438
CC(==O)	1.462-1.487
C—C(aromatic)	1.367-1.418
C—C(5-ring)	1.496-1.555
CO(5-ring)	1.357-1.382, 1.441-1.452
C-O-C(5-ring)	108.0-109.0
C-O-Me	116.7-119.2

Intramolecular hydrogen bonds (H atoms from difference map)

$D = H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	D — $H \cdot \cdot \cdot A$
O5—H1· · ·O2	0.99	1.65	2.547	147
012—H12···09	1.09	1.64	2.518	134

The structure was determined by direct methods. H atoms were placed in calculated positions, except those involved in the hydrogen bonds, which were positioned from difference syntheses. While the opposite configuration has marginally higher R factors (in the penultimate refinement round with a weighting scheme slightly different from that used in the final refinement cycles, R = 0.0651 versus 0.0649, wR = 0.0736 versus 0.0734), we hesitate to claim that we have established the absolute configuration. The data presented in this paper and Fig. 1 refer to the configuration with the lower pair of R values.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1990). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

We thank Professor E. Bullock for crystals and the Natural Sciences and Research Council of Canada for financial support.

References

- Bullock, E., Kirkaldy, D., Roberts, J. C. & Underwood, J. G. (1963). J. Chem. Soc. pp. 829-835.
- Molecular Structure Corporation (1985). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1990). TEXRAY. TEXSAN Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1995). C51, 274-277

Hexaethyl (3,5-Di-*tert*-butyl-4-hydroxyphenyl)methanetrisphosphonate at 173 K

MATTHIAS RAMM

Freie Universität Berlin, Institut für Kristallographie, Takustrasse 6, D-14195 Berlin, Germany

BURKHARD COSTISELLA AND HANS GROSS

Institut für Angewandte Chemie Adlershof e.V., Rudower Chaussee 5, D-12484 Berlin, Germany

(Received 22 December 1993; accepted 11 August 1994)

Abstract

In contrast to the liquid phase, in the solid state three ${}^{31}P$ NMR signals were found for the title compound, $C_{27}H_{51}O_{10}P_3$. The nonequivalence of the signals can be attributed to a hydrogen bond. The molecules bonded *via* hydrogen bonds form chains.

Comment

The hexaester (1) (Kuchar, Pasternak & Kirsanov, 1972) was the first gem-trisphosphonate structure to be solved unambiguously. The structures of the arylmethanetrisphosphonate ester (2) (Gross, Ozegowski, & Costisella, 1990) and the unsubstituted methanetrisphosphonate (3) (Gross, Costisella, Keitel & Ozegowski, 1993) were determined by ¹³C NMR in solution. The methine C atoms of (2) and (3) showed quadruplets due to the coupling with the three equivalent P nuclei. The ³¹P NMR spectra in CHCl₃ are very simple. Only one signal is observable for the equivalent P nuclei. In contrast, the ³¹P solid-state NMR spectrum of (2) revealed three comparable signals. Two signals appear in the ³¹P solid-state NMR spectrum of (4) (Costisella & Ramm, 1994). In the present paper we report the X-ray structure analysis of (2).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1026). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.